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APPENDIX D: Definition of Anisotropy in Linear Elasticity 

A material is linearly elastic if its applied stress field ( )σ x  is related to the resulting strain field 

( )ε x  by a linear relation or the generalized Hooke law, 

 ( ) ( ) ( ) , ( ) ( ) ( ) ( , , , 1, 2,3)x C x x        x x x         kl klmn mnC k l m n= = =σ ε σ ε . (D.1) 

Here C is a fourth-order tensor and called the stiffness tensor. The usual summation convention 

is applied here. In mechanics, second-order tensors are familiar but fourth-order ones are much 

less known. Nevertheless, they follow the general rule of orthogonal transformation between 

coordinates, i.e., 

' ( ) ( ) ( , , , , , , , 1, 2,3)x x        klmn ki lj mp nq ijpqC c c c c C k l m n i j p q= = .   (D.2) 

If C does not depend on x, the corresponding linearly elastic material is homogeneous; 

otherwise, it is inhomogeneous1. The nine equations relate nine components of stress to the 

nine corresponding strain components. Thus, there are 43 81=  elastic constants at most, 

corresponding to the indices taking the values 1, 2, and 3. The first equation is, 

11 1111 11 1112 12 1113 13

1121 21 1122 22 1123 23

1131 31 1132 32 1133 33 .

σ C ε C ε C ε
C ε C ε C ε
C ε C ε C ε

= + +
+ + +
+ + +

 
      
       

 

Next, let us examine the basic properties of the stiffness tensor C. Note that C is a linear 

transformation from the symmetric strain tensor space to the symmetric stress tensor space. As 

a result, the matrix components ijklC  of C, called elastic constants, satisfy the following relations, 

klmn lkmn klnmC C C= = .        (D.3) 

The symmetries expressed by these two equalities are usually referred to as the minor 

symmetries of C. These two symmetries reduce the number of elastic constant to 36.  

In linear elasticity, we adopt two important hypotheses: 

1. For an adiabatic or isothermal process, there exists a strain energy density function W, which is       

also a potential for the stresses, 

                                                      
1 For simplicity, the dependence on x will not be written out whenever it is evident or irrelevant 
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( )( ) ,       ij
ij

ij

WW σ
εεσ

ε ε
∂∂

= =
∂ ∂

.             (D.4a) 

2. The stability hypothesis which states that the stiffness tensor is positive definite, i.e., 

: 0, 0C       ijkl ij kl ijC= > ∀ ≠ε ε ε ε ε       (D.4b) 

1 1( ) : ; ( )
2 2

C           kl ijkl ij klW W Cε ε ε ε ε ε= = .     (D.4c) 

These two hypotheses amount to the following results, 

11 1111 11 1122 22 1132 32
11

22 2211 11 2222 22 2232 32
22

....

....

W C C C

W C C C

∂
= = + + +

∂
∂

= = + + +
∂

σ ε ε ε
ε

σ ε ε ε
ε

     (D.5a) 

2

1122 2211
11 22

W C C∂
= =

∂ ∂ε ε
 or in general   

2

klmn mnkl
kl mn

W C C∂
= =

∂ ∂ε ε
.  (D.5b) 

Accounting for these results, in the general anisotropic case the number of independent elastic 

constants is reduced to twenty one.  In matrix form relation, (D.1) is, 

11 1111 1122 1133 1112 1113 1123

22 2211 2222 2233 2212 2213 2223

33 3311 3322 3333 3312 3313 3323

12 1211 1222 1233 1212 1213 1223

1311 1322 1333 1312 1313 132313

2311 232223

C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C

σ
σ
σ
σ
σ
σ

 
 
 
 

= 
 
 
  
 

11

22

33

12

13

2333 2312 2313 2323 23

2
2
2C C C

ε
ε
ε
ε
ε
ε

  
  
  
  
  
  
  
      

.   (D.6) 

With the symmetry conditions given above, the matrix of the elastic constant is symmetric and 

called the stiffness matrix.   

The stress-strain relations given by (D.6) can also be presented in an inverted form as follows, 

  ,S         kl klmn mnε S σε σ= =        (D.7) 

where klmnS  are constants for a homogeneous material and are the elements of a fourth order 

tensor  1S  C −= . This tensor is called compliance tensor and has the same symmetry 

properties as C.  Relations (D.7) can be derived from the scalar function, 
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* 1( ) :
2

W = Sσ σ σ 1
2 ijkl ij klS σ σ=       (D.8a) 

and 

 
* *( ) ( ),      ij

ij
ij

W σ W σ
σ σ

ε ε
∂ ∂

= =
∂ ∂

      (D.8b) 

where W* is called stress energy density function. 

In matrix form the generalized Hook’s law using the compliance is also written as follows, 

11 1111 1122 1133 1112 1113 1123

22 2211 2222 2233 2212 2213 2223

33 3311 3322 3333 3312 3313 3323

12 1211 1222 1233 1212 1213 1223

1311 1322 1333 1312 1313 132313

2311 232223

S S S S S S
S S S S S S
S S S S S S
S S S S S S
S S S S S S
S S S

ε
ε
ε
ε
ε
ε

 
 
 
 

= 
 
 
  
 

11

22

33

12

13

2333 2312 2313 2323 23

2
2
2S S S

σ
σ
σ
σ
σ
σ

  
  
  
  
  
  
  
      

   (D.9) 

with klmn mnklS S= . 

Overall, due to the symmetries of stress and stress tensors as well as the symmetry due to the 

energy expressed in (D.5b), we can write the following equalities for the stiffness or 

compliance elements of the matrices in the constitutive relations,  

 klmn lkmn klnm nmklC C C C= = =  

With these symmetries, the matrix elements can be simplified as shown in the table below, 

tensor notation 11 22 33 23,32 31,13 12,21 

matrix notation+ 1 2 3 4 5 6 

  +This notation is used in the literature for layered composite materials 

This simplification is widely used in mechanics of composites mechanics materials and will be 

implemented in some applications shown later.  

Basic Cases of Elastic Symmetry 

Materials that obey the generalized Hook's law are in general different. With respect to their 

elastic properties, all engineering materials can be divided into isotropic and anisotropic. An 

isotropic elastic material is one in which the elastic properties are the same in all directions 
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drawn through a point. Depending on its structure, a material could be isotropic or anisotropic. 

The symmetry of an elastic material depends upon the symmetry of its structure. The 

relationship between the structural and elastic symmetry for crystals was established according 

to F. Neumann's principle: "the symmetry of the elastic properties of a solid contains that of its 

crystallographic structure". 

If there is symmetry of the elastic properties (i. e., elastic symmetry) in an anisotropic material, 

the corresponding generalized Hook's law is simpler since some of the coefficients of klmnC  are 

zero or related by linear relationships. These simplifications can be derived by applying the 

method summarized next.  

Let the material be referred to a coordinate system 1 2 3Ox x x  and to a second one ' ' '
1 2 3Ox x x symmetric 

with respect to the first one, the symmetry being the same as that observed in the structure. 

Since the directions of the respective axes ' ' '
1 2 3, ,  x x x and 1 2 3, ,  x x x  are equivalent as regards 

the elastic properties, the generalized Hook's law must be the same in the two coordinate 

systems. After writing these equations in both these systems, we transform to either of them 

expressing the elastic constants, say ' ' '
1 2 3, ,  x x x  in terms of 1 2 3, ,  x x x . On comparing the 

resulting similar equations, we find relationships between klmnC  and '
klmnC  (or klmnS  and '

klmnS ). 

Below we present the well-known material symmetries. Note that every case is discussed with 

respect to the material principal axes. 

Symmetry with respect to one plane 

The material that exhibits elastic symmetry with respect to one plane is called monoclinic. 

 

Fig. D1: Monoclinic symmetry. 

'
2 2,  x x

3x

'
2 2,e e

3e

'
1 1,e e

'
1 1,  x x '

3x

'
3e

O
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The symmetry is expressed by the requirement that the elastic constants do not change under a 

change from the system 1 2 3Ox x x  to the system ' ' '
1 2 3Ox x x  (Fig. D1). Imposing the above 

requirement on the matrices (D.6) and (D.9), the number of the elastic constants reduces to 

thirteen. Namely, 

11 1111 1122 1133 1112 11

22 1122 2222 2233 2212 22

33 1133 2233 3333 3312 33

12 1112 2212 3312 1212 12

13 1313 1323 13

23 1323 2323 23

0 0
0 0
0 0
0 0 2

0 0 0 0 2
0 0 0 0 2

C C C C
C C C C
C C C C
C C C C

C C
C C

   
   
   
   

=   
   
   
      
   

σ ε
σ ε
σ ε
σ ε
σ ε
σ ε





 
 
 
 
  



.   (D.10) 

Interestingly, more solids belong to the monoclinic system than to any other one. Typical 

examples are natural materials like, kaolin (a clay material) and muscovite (or mica). 

Symmetry with respect to two orthogonal planes. 

A material that exhibits elastic symmetry with respect to two orthogonal planes is called an 

orthotropic material. 

 

Fig. D2: Orthotropic symmetry. 

Similarly, the symmetry is expressed by the requirement that the elastic constants remain the 

same under a change from the system 1 2 3Ox x x to the system ' ' '
1 2 3Ox x x  (Fig. D2). The number of 

the elastic constants is reduced to nine and the stress-strain relation become, 

'
2 2,  x x

3x

'
2 2,e e

3e

1e

'
1 1,  x x '

3x

'
3e

O

'
1e

'
1 1,  x x
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11 1111 1122 1133 11

22 1122 2222 2233 22

33 1133 2233 3333 33

12 1212 12

13 1313 13

23 2323 23

0 0 0
0 0 0
0 0 0

0 0 0 0 0 2
0 0 0 0 0 2
0 0 0 0 0 2

C C C
C C C
C C C

C
C

C

    
    
    
    

=    
    
    
        
    

σ ε
σ ε
σ ε
σ ε
σ ε
σ ε

.   (D.11) 

In this category, we find materials like wood, layered polymer composites, several crystals and 

rolled metals. 

Symmetry with respect to one axis. 

A material that possesses an axis of symmetry, in the sense that all rays at right angles to this axis 

are equivalent, is called transversely isotropic. That is, the elastic properties should be the same 

in all systems of axes shown in Fig. D3.  

 

Fig. D3: Transverse isotropic symmetry. 

The number of independent coefficients is reduced to five and the stress-strain relation is given 

by, 

1111 1122 1133
11 11

1122 1111 1133
22 22

1133 1133 3333
33 33

12 121111 1122

13 13
1313

23 23
1313

0 0 0
0 0 0
0 0 0

1 20 0 0 ( ) 0 0
2

20 0 0 0 0
20 0 0 0 0

C C C
C C C
C C C

C C

C
C

                 =    −                    

σ ε
σ ε
σ ε
σ ε
σ ε
σ ε

. (D.12) 

 

2x2e
1e

1x

'
3 3,  x x

'
3 3,e  e

O

'
2e '

2x

'
1x

'
1e

θ

θ
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Isotropy 

An isotropic material possesses elastic symmetry that is independent of the orientation of the 

axes. Following the same procedure, we find that, the number of the elastic constants is reduced 

to two and presented in the following way,  

1111 1122 1212 1111 12122 ; ; ( ) 2              C C C C C= + = = − =λ µ λ µ   (D.13) 

where λ  and µ  are the so-called Lamé constants, related to Young’s modulus E  and Poisson’s 

ratio ν  by ,  

/ (1 )(1 2 )λ Eν ν ν= + − ,   / 2(1 )μ E ν= + .  

Based on the last identification the stress-strain relation for an isotropic linear material (D.1), 

in matrix form, is given by, 

11 11

22 22

33 33

12 12

13 13

23 23

2 0 0 0
2 0 0 0

2 0 0 0
20 0 0 0 0
20 0 0 0 0
20 0 0 0 0

σ ελ µ λ λ
σ ελ λ µ λ
σ ελ λ λ µ
σ εµ
σ εµ
σ εµ

+    
    +    
    +

=    
    
    
            

.   (D.14a) 

In index notation they are, 

2kl pp kl klσ λε δ µε= +         (D.14b) 

with their inverse given by, 

1
2 (3 2 ) 2

ij
ij kk ij

λδ
ε σ σ

µ λ µ µ
= − +

+
.      (D.14c) 

For an isotropic material, it is also possible to express C  in (D.1) as a fourth order isotropic tensor. 

Note that an isotropic tensor in Euclidian space is a tensor whose components remain the same 

in any rectangular Cartesian system related by orthogonal transformation.  

In this case we have, 

( )= +  klmn kl mn km ln kn lmC +λδ δ µ δ δ δ δ       (D.15a) 

and 
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[ ]( )

2
kl klmn mn kl mn km ln kn lm mn

mm kl kl

Cσ ε λδ δ µ δ δ δ δ ε

λε δ µε

= +

= +

= +
                     .

    (D.15b) 

For a linear elastic isotropic material, the strain energy density function W  in (D.4a) takes the 

form,  

1( )
2ij ii kk ij ijW ε λε ε με ε= + .       (D.16) 

This function can be differentiated with respect to strains to obtain the stresses following the 

steps below,  

( ) 1 2
2

ij ijii kk
pq kk ii ij

pq pq pq pq

W ε εε εσ ε ε με
ε ε ε ε

 ∂ ∂∂ ∂
= = + +  ∂ ∂ ∂ ∂ 

λ  

( )

( )

1 2
2
1 2 2 2
2

     

pq ip iq kk ii kp kq ij ip jq

pq kk pq pq kk pq

σ δ δ ε ε δ δ με δ δ

δ ε με δ ε με

= + +

= + = +

λ

λ λ
 

which is expression (D.14b). This important result defines the strain energy density (D.16) as a 

stress tensor potential, which can be established thermodynamically. 

Applications to composites 

High strength composites are made of layers of laminae, i.e., laminates with the reinforcing fibers 

along one (unidirectional composites) or several directions (multidirectional composites). 

Structural components from such materials are strong and light but the relationships between the 

stiffness and engineering constants are not very simple. To establish the constitutive relations, it 

is better to relate the compliance coefficients with engineering constants and then invert the 

matrix of the compliance to obtain the stiffness. In the subsequent paragraphs, we present steps 

to follow in order to express such relations in the principal material and rotated coordinate 

system.  

A typical lamina, or an orthotropic material element, is made of continuous carbon or glass fibers 

and epoxy matrix as shown in Fig. D4 with respect to the principal material axes,  
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Fig.  D4: Typical lamina (unidirectional reinforcement).  

The constitutive relations, i.e. strain-stress, using the compliance can be obtained by inverting 

the stiffness matrix (D.11), 

11 1111 1122 1133 11

22 1122 2222 2233 22

33 1133 2233 3333 33

12 1212 12

13 1313 13

23 2323 23

0 0 0
0 0 0
0 0 0

0 0 0 0 0 2
0 0 0 0 0 2
0 0 0 0 0 2

S S S
S S S
S S S

S
S

S

    
    
    
    

=    
    
    
        
    

ε σ
ε σ
ε σ
ε σ
ε σ
ε σ

.   (D.17) 

Comparing it with (D.11), we see the same structure with the nine independent constants. Also, 

it is interesting to make the following remarks: 

1. There is no coupling between normal stresses and shear strains 

2. There is no coupling between shear stresses and normal strains 

3. There is no coupling between a shear stress acting on one plane and a shear stress on a 

different plane.  

It is important to note that by changing the reference system of coordinates, the number of 

independent constant does not but the matrix is fully populated. To express the elements of the 

matrix (D.17) with the engineering constants, we consider the following simple loading cases: 

x1

x3

x2




































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


























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


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1. Longitudinal tension along direction 1 

From (D.17) we have, 

12
11 1111 11 11 22 1122 11 11

1 1

13
33 1133 11 11 12 13 23

1

1 ;

; 0

      

      

νε S σ σ ε S σ σ
E E

νε S σ σ ε ε ε
E

= = = = −

= = − = = =
 

 

2. Transverse tension (in-plane) along direction 2 

   From (D.17) we have, 

  

21
11 1122 22 22 22 2222 22 22

2 2

23
33 1133 33 22 12 13 23

2

1;

; 0

       

       

νε S σ σ ε S σ σ
E E
νε S σ σ ε ε ε
E

= = − = =

= = − = = =
 

 

3. Transverse tension (out of plane) along direction 

From (D.17) we have, 

31 32
11 1133 33 33 22 2233 33 33

3 3

33 1133 33 33 12 13 23
3

;

1 ; 0

      

      

ν νε S σ σ ε S σ σ
E E

ε S σ σ ε ε ε
E

= = − = = −

= = = = =
 

 

4. In plane shear on the 1-2 plane 

From (D.17) we have, 

11 22 33

12 12 13 23
12

0
1 ; 0

2
      

ε ε ε

ε σ ε ε
G

= = =

= = =
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




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5. Out of plane shear on the 1-3 plane 

From (D.17) we have, 

11 22 33

13 13 12 23
13

0
1 ; 0

2
      

ε ε ε

ε σ ε ε
G

= = =

= = =
 

 

 

6. Out of plane shear on the 2-3 plane 

From (D.17) we have, 

11 22 33

23 23 12 13
23

0
1 ; 0

2
      

ε ε ε

ε σ ε ε
G

= = =

= = =
 

 

 

Thus, relations expressed in (D.17) are, 

3121

1 2 3

3212

11 111 2 3

22 2213 23

33 331 2 3

12 12

1213 13

23 23

13

23

1 0 0 0

1 0 0 0

1 0 0 0

210 0 0 0 0
4 2

1 20 0 0 0 0
4

10 0 0 0 0
4

νν
E E E

νν
E E E
ν ν
E E E

G

G

G

 − − 
 
 
− −            − −     =                     
 
 
  
 

ε σ
ε σ
ε σ
ε σ
ε σ
ε σ



 .  (D.18) 

Note that the shear components in (D.18) can be simplified. However, they are left for 

consistency, and correspondence/comparison with (D.17). In the following paragraphs, we will 

simplify these elements when it is appropriate. ,  

 The symmetry requirements on the above compliance matrix result in the following relations, 

x1

x3

x2



























































































13σ







13σ

x1

x3

x2



























































































23σ





23σ
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13 31 23 3221 12

2 1 1 3 2 3

; ;                ν ν ν νν ν
E E E E E E

= = =      (D.19a) 

or in general  

.ij ji ij i

i j ji j

ν ν ν Eor
E E ν E

= =             (D.19b) 

It is easy to see here the nine independent elastic constants, i.e. 1 2 3, , ,E E E 12 13 23, , ,G G G and

21 12 13 31 23 32, , , , ,ν ν ν ν ν ν  related by the three symmetry relations (D.19). 

Structural panels made of layered composites are relatively thin and subjected to in-plane loads.  

Thus, they are in a state to plane stress.  It is interesting to deduce the strain-stress as well as 

stress-strain relations in such cases.   

We consider an orthotropic material as it is the most common composite material used in 

structural panels.  

For plane stress problems, the non-zero stress components are 11 22 12 21, , 0  σ σ σ σ= ≠  and 

13 23 33, , 0  σ σ σ =  as shown in Fig. D5. 

 

 

 

 

 

 

Fig. D5: Plane stress state with reference to the principal material axe 

For this plane case the full matrix relation (D.17) reduces to,  

11 1111 1122 11

22 1122 2222 22

12 1212 12

0
0

0 0 2

S S
S S

S

    
    =    
    
    

ε σ
ε σ
ε σ

.      (D.20a) 

And in terms of the engineering constants, 

1x

2x

21σ

12σ

12σ

21σ

11σ

11σ

22σ

22σ
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21

1 2
11 11

12
22 22

1 2
12 12

12

1 0

1 0
2

10 0
4

ν
E E
ν
E E

G

 
− 

    
    = −    
    

    
 
 

ε σ
ε σ
ε σ

.     (D.20b) 

Notice here that the number of independent elastic constants reduces to four 1 2 12 21 12, , , ,E E G ν ν  

with the symmetry 21 2 12 1/ /ν E ν E= .  

In mechanics of composites, the constitutive relations shown earlier needs to be simplified 

because of tensorial nature of stress, strain and the compliance that makes transformation 

between coordinate systems complex. Thus, the following convention is adopted in the 

literature. In this summary we present the case of a plane stress, which is the most common 

state of stress encountered in applications of composite materials as structural components. In 

the adopted simplification, using the engineering strains 12 122ε=γ , the stresses and strains with 

reference to the principal material axes 1 2( , )x x are indicated by, 

11 1

22 2

12 12

   
   

→   
   
   

σ σ
σ σ
σ σ

    ;   
11 1

22 2

12 122

ε ε
ε ε
ε

   
   

→   
   
   γ

.  

In terms of the compliance we have,   

1 11 12 1

2 12 22 2

12 66 12

0
0

0 0

S S
S S

S

    
    =    
    
    

ε σ
ε σ
γ σ

.      (D.21a) 

From (D.20b) the elastic constants are,  

21 12
11 22 12 21 66

1 2 2 1 12

1 1 1; ; ;   ν νS S S S S
E E E E G

= = = = − = − =    (D.21b) 

In terms of stiffness, relation (D.21a) can be inverted to obtain the constitutive relations as 

follows,  

11 11 12 11 1 11 12 1

22 12 22 22 2 12 22 2

12 66 12 12 66 12

0 0
0 0

0 0 2 0 0

Q Q Q Q
Q Q Q Q

Q Q

         
         = ⇒ =         
         
         

σ ε σ ε
σ ε σ ε
σ ε σ γ

  (D.22a) 
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with,  

1 2
11 22

12 21 12 21

21 1 12 2
12 21 66 12

12 21 12 21

;
1 1

;
1 1

           

      

E EQ Q
ν ν ν ν

ν E ν EQ Q Q G
ν ν ν ν

= =
− −

= = = =
− −

 .   (D.22b) 

With reference to another system of axes ( , )x y , they are indicated as, 

x

x

xy

 
 
 
 
 

σ
σ
σ

   and  
x

y

xy

ε
ε

 
 
 
 
 γ

        (D.23) 

with the corresponding constitutive relations, 

x xx xy xs x

y yx yy ys y

xy sx sy ss xy

S S S
S S S
S S S

    
    

=    
    
    

ε σ
ε σ
γ σ

      (D.24) 

x xx xy xs x

y yx yy ys y

xy sx sy ss xy

Q Q Q
Q Q Q
Q Q Q

    
    

=    
    
    

σ ε
σ ε
σ γ

.      (D.25) 

Note here that both matrices are full which demonstrates a coupling between normal and shear 

stresses. However, the matrices are symmetric and the number of independent constants 

remains the same, i.e. four independent elastic constants. 

Changes in the coordinate system 

Very often the lamina principal axes ( 1 2( , )x x  do not coincide with the loading axes ( , )x y ). 

Then the stress-strain relation referred to the principal axes can be expressed in terms of the 

relations with reference to ( , )x y . Note that the transformation of stresses and strains in 

Cartesian coordinates are independent of material properties. That is, they are the same if the 

material is isotropic or anisotropic. Fig. D.6 shows the stress state at a point in an orthotropic 

material with respect to 1 2( , )x x  and ( , )x y . The stresses 11 22 12, ,  σ σ σ  can be expressed in terms 

of  the standard equations found in the transformation of a second order tensor (or Morh’s 

circle), i.e.,  
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Fig. D6: State of stress of an element in plane stress. 

2 2
1

2 2
2

2 2
12 21

cos sin 2 cos sin

sin cos 2 cos sin

( ) cos sin (cos sin ).

x y xy

x y xy

x y xy

σ σ θ σ θ σ θ θ

σ σ θ σ θ σ θ θ

σ σ σ σ θ θ σ θ θ

= + +

= + −

= = − − + −

    

For simplicity, we introduce cos , sin c s= =θ θ . It is often convenient in the mechanics of 

composites materials, to express these transformation equations in matrix form as follows, 

 [ ]
2 2

1
2 2

2
2 2

12

2
2

x x

y y

xy xy

c s cs
s c cs T
cs cs c s

      
      

= − =      
      − −      

σ σ σ
σ σ σ
σ σ σ

 .   (D.26) 

As for the strains, the same transformation rules apply and the form of the transformation 

relation is the same,  

2 2
1

2 2
2

2 2
12

cos sin cos sin

sin cos cos sin

( ) cos sin (cos sin ).

x y xy

x y xy

x y xy

ε ε ε ε

ε ε ε

ε ε ε ε

= + +

= + −

= − − + −

θ θ θ θ

θ σ θ θ θ

θ θ θ θ

[ ]
2 2

1
2 2

2
2 2

12

-
- -

x x

y y

xy xy

ε c s cs ε ε
ε s c cs ε T ε
ε cs cs c s ε ε

      
      

⇒ = =      
      
      

 

Since we introduced the engineering strain earlier, 12 122 ,=γ ε  2xy xy=γ ε , a factor of 2 appears 

in the third equation. Thus, matrix [ ]T  is modified accordingly,  

 [ ]
2 2

1
2 2

2
2 2

12

'
2 2

x x

y y

xy xy

ε c s cs ε ε
ε s c cs ε T ε

cs cs c s

      
      

= − =      
      − −      γ γ γ

.    (D.27)  

In inverted form, (D.27) becomes, 

1x
2x

12σ

12σ 21σ

1σ

2σ

2σ1x
y

θ

2x
x

yxσ

xyσ

xyσ

yxσ

xσ
xσ

yσ

yσ

1σ

21σ
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[ ]
2 2

1 1
12 2

2 2
2 2

12 12

'
2 2

x

y

xy

ε c s cs ε ε
ε s c cs ε T ε

cs cs c sγ γ γ

−

      −
      

= =      
      − −      

.    (D.28) 

The next step is to express the elements of compliance matrix in (D.24) in terms of the elements 

with reference to the principal material axes 1 2( , )x x . They can be obtained by transformation 

of the strain-stress relations following the steps below, 

[ ] [ ]

[ ] [ ]

1 11 12 1
1 1

2 21 22 2

12 66 12

11 12
1

21 22

66

0
' ' 0

0 0

0
' 0 .

0 0
                                             

x

y

xy

x

y

xy

ε ε S S σ
ε T ε T S S σ

S σ

S S σ
T S S T σ

S σ

− −

−

      
      = =      

           
  
  =   

      

γ γ
  (D.29) 

Comparing it with (D.24), we have, 

xx xy xs

yx yy ys

sx sy ss

S S S
S S S
S S S

 
 
 
 
 

[ ] [ ]
11 12

1
21 22

66

0
' 0

0 0

S S
T S S T

S

−
 
 =  
 
 

.    (D.30) 

Explicitly, the constants are related as follows, 

( )
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

4 4 2 2
11 22 12 66

4 4 2 2
11 22 12 66

2 2 4 4
11 22 12 66 66

2 2 4 4
11 22 66 12

3 3
11 12 66 22 12 66

3 3
11 12 66 22 12 66

2

2

4 4 8 2

2 2 2 2

2 2 2 2 .

xx

yy

ss

xy

xs

ys

S S c S s S S c s

S S s S c S S c s

S S S S S c s S c s

S S S S c s S c s

S S S S c s S S S cs

S S S S cs S S S c s

= + + +

= + + +

= + − − + +

= + − + +

= − − − − −

= − − − − −

    (D.31) 

Using similar steps, we can express the stiffness matrix in (D.25) with reference to an ( , )x y

coordinate system, 
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( )
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

4 4 2 2
11 22 12 66

4 4 2 2
11 22 12 66

2 2 4 4
11 22 12 66 66

2 2 4 4
11 22 66 12

3 3
11 12 66 22 12 66

3 3
11 12 66 22 12 66

2 4

2 4

2 2

4

2 2

2 2 .

xx

yy

ss

xy

xs

ys

Q Q c Q s Q Q c s

Q Q s Q c Q Q c s

Q Q Q Q Q c s Q c s

Q Q Q Q c s Q c s

Q Q Q Q c s Q Q Q cs

Q Q Q Q cs Q Q Q c s

= + + +

= + + +

= + − − + +

= + − + +

= − − − − −

= − − − − −

    (D.32) 

It is also of interest and useful in composites mechanics to express the engineering constants 

(i.e. moduli and Poisson’s ratios) with reference to a coordinate system rotated at an angle theta 

with respect to the principal material coordinates. For a better understanding and links to the 

applied load, we can imagine a series of elementary tests, similar to the ones used to construct 

the compliance matrix (D.18). Thus, we consider a small square of a unidirectional composite 

whose reinforcing fibers are at an angle θ  with the principal materials axes as shown in Fig. 

D7. Note here that we have a full matrix.  

 

 

 

 

 

 

Fig. D7: Element of a composite plate loaded along axes at an angle to the principal material system. 

We apply the stresses , ,x x xy yxσ σ σ σ= , one at a time, to obtain in each case the following strain 

stress relations, 

(a). apply 1 , ,        xy xs
x x x y x xy x

x x x

ν
ε ε γ

E E E
⇒ = = − =

ησ σ σ σ . 

(b). apply 1, ,        yx ys
y x y y y xy y

y y y

ν
ε ε γ

E E E
⇒ = − = =

η
σ σ σ σ . 

(c). apply 1, ,sysx
xy x xy y xy xy xy

xy xy xy

ε ε γ
G G G

ηησ σ σ σ⇒ = = =         (or pure shear). 

1x
y

θ

2x
x

yxσ

xyσ

xyσ

yxσ

xσ
xσ

yσ

yσ
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Here the coefficients , , ,xs ys sx syη η η η are the shear coupling coefficients.  In matrix form we 

have,   

 

1

1

1

yx sx

x y xy
x x

xy sy
y y

x y xy
xy xy

ysxs

x y xy

ν
E E G
ν
E E G

E E G

 
− 

         = −           
 
 
 

η

ε σ
η

ε σ
γ σ

ηη

.      (D.33) 

These elastic constants are related by the following symmetries,  

; ;xy yx ys syxs sx

x y x xy y xy

ν ν
E E E G E G

η ηη η
= = =             .     (D.34) 

A comparison with the matrix form of strain – stress relations (D.24),     

x xx xy xs x

y yx yy ys y

xy sx sy ss xy

S S S
S S S
S S S

    
    

=    
    
    

ε σ
ε σ
γ σ

      (D.24bis) 

results in the following,  

1 1 1; ;      xx yy ss
x y xy

S S S
E E G

= = = .      (D.35a) 

 xy yx
xy yx

x y

S S
E E
ν ν

= = − = −        (D.35b) 

xs sx
xs sx

x xy

S S
E G
η η

= = =         (D.35c) 

ys sy
ys sy

y xy

S S
E G
η η

= = =         (D.35d) 

We can also express the moduli, Poisson’s ratios and shear coupling coefficients in terms of 

, ( , , , )  ijS i j x y s=  appropriate combination of (D.35). To obtain the stiffness matrix, we can 

invert the matrix in (D.33).  

Next we express the variation of the elastic constants as a function of θ , angle of the loading 



21/22 
 

direction with respect to the material principal direction (Fig. D7). This can be achieved by 

combining (D.35) and (D.31). The resulting elastic expressions for the constants are useful 

because they allow for the examination of the influence of loading direction (with respect to 

the material principal directions) on the strain-stress response of a lamina.  

A typical case is shown below for the Young’s modulus along orientation defined by axis x. 

We start with (D.31), replace parameters ijS  with the corresponding expressions in (D.35) and 

the symmetry conditions (D.19a) to obtain, 

4 4 2 2 2 212

1 2 1 12

4 4 2 2 2 2 2 212 21

1 2 1 2 12

4 2 2 4 2 2 2 212 21

1 1 2 2 12

1 1 1 12

1 1 1 1

1 1 1 1

x

x

x

vc s c s c s
E E E E G

v vc s c s c s c s
E E E E E G

v vc c s s c s c s
E E E E E G

= + − +

= + − − +

   
= − + − +   
   

   (D.36) 

( ) ( )
2 2

2 2 2 2 2 2
12 21

1 2 12

1 1 .
x

c sc v s s v c c s
E E E G

⇒ = − + − +     (D.37) 

A similar procedure is followed to express the other elastic constants in terms of the 
orientation angle. 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2
2 2 2 2 2 2

12 21
1 2 12
2 2

2 2 2 2 2 2
12 21

1 2 12

2 2 2 2 2 2 2

12 21
1 2 12

2 2
2 2 2 2 2 2

12 21
1 2 12

3 3

12 21
1 2

1 1

1 1

1 4 4 ( )1 1

1

2 21 1

x

y

xy

xy yx

x y

xs sx

x xy

c sc v s s v c c s
E E E G

s cs v c c v s c s
E E E G

s c s c c sv v
G E E G
v v c sv c s v s c c s
E E E E G

c s csv v
E G E E
η η

= − + − +

= − + − +

−
= + + + +

= = − + − +

= = + − + ( )

( ) ( ) ( )

2 2

12

3 3
2 2

12 21
1 2 12

2 21 1ys sy

y xy

cs c s
G

cs c s csv v c s
E G E E G
η η

− −

= = + − + + −

   (D.38) 
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