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APPENDIX D: Definition of Anisotropy in Linear Elasticity

A material is linearly elastic if its applied stress field 0(X) is related to the resulting strain field

£(X) by a linear relation or the generalized Hooke law,
o(x)=C(x)e(x) , o,(x)=C,, (x)e¢, (x) (k,l,m,n=1,2,3). (D.1)

Here C is a fourth-order tensor and called the stiffness tensor. The usual summation convention
is applied here. In mechanics, second-order tensors are familiar but fourth-order ones are much
less known. Nevertheless, they follow the general rule of orthogonal transformation between

coordinates, 1.€.,

Cl'clmn (X) = Ckicljc ¢ C (x) (kalamanaia ja p.q= 1:29 3) : (D2)

mp~nq " ijpq

If C does not depend on X, the corresponding linearly elastic material is homogeneous;

otherwise, it is inhomogeneous’. The nine equations relate nine components of stress to the
. . . 4 .
nine corresponding strain components. Thus, there are 3" =81 elastic constants at most,

corresponding to the indices taking the values 1, 2, and 3. The first equation is,

0_1 = Cllllgll +C1|12812 +C1]13813

+ G108y + Gy + Gy

+CaiEs + Cinén + Gty -

Next, let us examine the basic properties of the stiffness tensor C. Note that C is a linear
transformation from the symmetric strain tensor space to the symmetric stress tensor space. As

a result, the matrix components Cu of C, called elastic constants, satisfy the following relations,

Cklmn = (D . 3)

lkmn = Cklnm :

The symmetries expressed by these two equalities are usually referred to as the minor

symmetries of C. These two symmetries reduce the number of elastic constant to 36.
In linear elasticity, we adopt two important hypotheses:

1. For an adiabatic or isothermal process, there exists a strain energy density function W, which is

also a potential for the stresses,

! For simplicity, the dependence on x will not be written out whenever it is evident or irrelevant
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oW (&) oW (e;)
= , o, =—1"", (D4a
e o€ % o€.. )

)

2. The stability hypothesis which states that the stiffness tensor is positive definite, i.e.,

£:Ce=Cye,6,>0, V &, #0 (D.4b)
1 _ 1
We)= S Ce ; W(,)= ECijk,gjjgkl . (D.4c)

These two hypotheses amount to the following results,

ow
T =0y, =C 116, T Cpéy +o €136y,
av; (D.5a)
8_ =0y =Cp &+ Coppény +oo+ Cppyy &3
&y
o'W . o'w
FYryate C»n =C,,, oringeneral ——=C, =C, ... (D.5b)
£,,0,, 0&,0¢,,

Accounting for these results, in the general anisotropic case the number of independent elastic

constants is reduced to twenty one. In matrix form relation, (D.1) is,

O Cin Cin Cuis G Gy G| &

O Coi Com Gy Gy Coyy Coys || €2

O | _ Cin Gy Gy Gy Gy Coggs || 65 (D.6)
Oy, Con Cun Cuy Cupn Gy Gy || 26,

O3 Con Cun Cus Cupn Gy Gy || 26

Oy Con Cun Gy G Cuyy Cip )\ 265,

With the symmetry conditions given above, the matrix of the elastic constant is symmetric and

called the stiffness matrix.

The stress-strain relations given by (D.6) can also be presented in an inverted form as follows,
e=8So , ¢,=5,.0 (D.7)

where §,,,, are constants for a homogeneous material and are the elements of a fourth order

tensor 8 = C™'. This tensor is called compliance tensor and has the same symmetry

properties as C. Relations (D.7) can be derived from the scalar function,
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" 1 1
W (o)= 50‘ :So = ESijk,aUak, (D.8a)

and

v oo, ’ oo

y

(D.8b)

where W' is called stress energy density function.

In matrix form the generalized Hook’s law using the compliance is also written as follows,

én Sin Sim Sum S Sus S | %u
€y St Sun Swy Suin Snis Sy || O
€33 _ Sy Sum Sy Sy Sy iy || (D.9)
P Son Som Sos S Sois Sy || 203,
€3 Sion Sin Sun Sun Sain Sy || 203
& Syt Sy Sy Suin Suin Sum )\ 20,
with §, =S

kimn mnkl *

Overall, due to the symmetries of stress and stress tensors as well as the symmetry due to the
energy expressed in (D.5b), we can write the following equalities for the stiffness or

compliance elements of the matrices in the constitutive relations,

Cklmn = Clkmn = C

klnm

= Cnmkl

With these symmetries, the matrix elements can be simplified as shown in the table below,

tensor notation 11 22 | 33 | 23,32 | 31,13 | 12,21

matrix notation” 1 2 3 4 5 6

“This notation is used in the literature for layered composite materials

This simplification is widely used in mechanics of composites mechanics materials and will be

implemented in some applications shown later.

Basic Cases of Elastic Symmetry

Materials that obey the generalized Hook's law are in general different. With respect to their
elastic properties, all engineering materials can be divided into isofropic and anisotropic. An

isotropic elastic material is one in which the elastic properties are the same in all directions
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drawn through a point. Depending on its structure, a material could be isotropic or anisotropic.

The symmetry of an elastic material depends upon the symmetry of its structure. The
relationship between the structural and elastic symmetry for crystals was established according
to F. Neumann's principle: "the symmetry of the elastic properties of a solid contains that of its

crystallographic structure".

If there is symmetry of the elastic properties (i. €., elastic symmetry) in an anisotropic material,
the corresponding generalized Hook's law is simpler since some of the coefficients of C,, are

zero or related by linear relationships. These simplifications can be derived by applying the

method summarized next.

Let the material be referred to a coordinate system Ox,x,x; and to a second one Ox,x,x, symmetric

with respect to the first one, the symmetry being the same as that observed in the structure.

Since the directions of the respective axes x,, x,, x,and x,, x,, x; are equivalent as regards

the elastic properties, the generalized Hook's law must be the same in the two coordinate

systems. After writing these equations in both these systems, we transform to either of them

expressing the elastic constants, say x,, x,, x, in terms of x;, x,, x;. On comparing the

and S

resulting similar equations, we find relationships between C,, o )

and C,,,, (or S,

mn mn

Below we present the well-known material symmetries. Note that every case is discussed with

respect to the material principal axes.

Symmetry with respect to one plane

The material that exhibits elastic symmetry with respect to one plane is called monoclinic.

X3

h
eﬂ

2,6,
0] .

e.e '
151 Xy, X,

X, X, ,
X3

Fig. DI1: Monoclinic symmetry.
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The symmetry is expressed by the requirement that the elastic constants do not change under a

change from the system Oxx,x;, to the system Oxx,x, (Fig. DI). Imposing the above

requirement on the matrices (D.6) and (D.9), the number of the elastic constants reduces to

thirteen. Namely,

oy Cii Ciz Gz Gy 0 0 &

O Cin Cop Cpyy Gy 0 0 €

O | _ Ciss Cuyy Gy Gy 0 0 €3 | (D.10)
Oy Cin Con Gy Gy 0 0 28,

O3 0 0 0 0 Cyus Gy || 26,

O 0 0 0 0 Chuy Gy )\ 265

Interestingly, more solids belong to the monoclinic system than to any other one. Typical

examples are natural materials like, kaolin (a clay material) and muscovite (or mica).

Symmetry with respect to two orthogonal planes.

A material that exhibits elastic symmetry with respect to two orthogonal planes is called an

orthotropic material.

x3 .
X, X,
4
/"’
/"
“ T el //
0 e, e,
e , Xys Xy
¥ &
X X |
X3

Fig. D2: Orthotropic symmetry.

Similarly, the symmetry is expressed by the requirement that the elastic constants remain the
same under a change from the system Ox,x,x,to the system Ox,x,x, (Fig. D2). The number of

the elastic constants is reduced to nine and the stress-strain relation become,
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CYllll C11122 C1133
Cl 122 C2222 C2233
CI 133 C2233 C3333

0 0 0
0 0 0
0 0 0

Con
0
0

oS O O

0
Cisis
0

0 &
0 &y
0 &5
0 2¢,
0 2¢&,
Chans )\ 2653

(D.11)

In this category, we find materials like wood, layered polymer composites, several crystals and

rolled metals.

Symmetry with respect to one axis.

A material that possesses an axis of symmetry, in the sense that all rays at right angles to this axis

are equivalent, is called transversely isotropic. That is, the elastic properties should be the same

in all systems of axes shown in Fig. D3.

X3, X3

QN
w
)
W -
-
>

-
.-
-
-
-
-

-

Fig. D3: Transverse isotropic symmetry.

The number of independent coefficients is reduced to five and the stress-strain relation is given

by,

Cllll C1122 C1133
C‘1122 C'1111 C1133
Cl 133 Cl 133 C3333

0 0 0
0 0 0
0 0 0

1

E(le _C1122)

0
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0 0
0 0
0 0

C‘1313 0
O C1313
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Isotropy

An isotropic material possesses elastic symmetry that is independent of the orientation of the
axes. Following the same procedure, we find that, the number of the elastic constants is reduced

to two and presented in the following way,
Cy=4A+2u ;5 Cp=4; C,,=(Cyy,— Cyy)=2u (D.13)

where A and 4 are the so-called Lamé constants, related to Young’s modulus £ and Poisson’s

ratio v by,
A=Ev/(1+v)1-2v), u=E/2(1+v).

Based on the last identification the stress-strain relation for an isotropic linear material (D.1),

in matrix form, is given by,

o, A+2u A A 0 0 0) ¢,
0, A A+2u A 0 0 0 &y
o3 | _ A A A+2u 0 0 0| &5, (D.14a)
oy, 0 0 0 u 0 0/ 2¢&,
O3 0 0 0 0 u 0/ 2¢,
o, 0 0 0 0 0 wu)\2e,
In index notation they are,
oy =A€,,0, +2us, (D.14b)
with their inverse given by,
A, 1
= d +—o0,;. (D.14c)

E. =——O0
Y 2uBA+2u) 2!

For an isotropic material, it is also possible to express C in (D.1) as a fourth order isotropic tensor.
Note that an isotropic tensor in Euclidian space is a tensor whose components remain the same

in any rectangular Cartesian system related by orthogonal transformation.

In this case we have,

C

kimn

=15,8, +1(5,,5, +5,0,) (D.15a)

mn

and
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0 = Cuf, =[ﬂ“5k15mn +u(9,,6

klmn'™ mn In

+ 5kn 5lm )] gmn

(D.15b)
=g, O, +2us, .

mm

For a linear elastic isotropic material, the strain energy density function W in (D.4a) takes the

form,
1
W(E,‘!./.) = E /lgiigkk + ILLS!./.E,‘!./. N (D 16)

This function can be differentiated with respect to strains to obtain the stresses following the

steps below,

_e) 100 e Py
Mo e 26, " o " B¢
pq rq rq rq
1
c,, = 5/1 (5ip5iq6kk + 8ii5kp5kq ) + Zﬂsyéipéjq
1
=E/1(25pq8kk)+2,ugpq =A0,.6 +2ue,

which is expression (D.14b). This important result defines the strain energy density (D.16) as a

stress tensor potential, which can be established thermodynamically.

Applications to composites

High strength composites are made of layers of laminae, i.e., laminates with the reinforcing fibers
along one (unidirectional composites) or several directions (multidirectional composites).
Structural components from such materials are strong and light but the relationships between the
stiffness and engineering constants are not very simple. To establish the constitutive relations, it
is better to relate the compliance coefficients with engineering constants and then invert the
matrix of the compliance to obtain the stiffness. In the subsequent paragraphs, we present steps
to follow in order to express such relations in the principal material and rotated coordinate

system.

A typical lamina, or an orthotropic material element, is made of continuous carbon or glass fibers

and epoxy matrix as shown in Fig. D4 with respect to the principal material axes,
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Fig. D4: Typical lamina (unidirectional reinforcement).

The constitutive relations, i.e. strain-stress, using the compliance can be obtained by inverting

the stiffness matrix (D.11),

€ S S S, 0 0 0 O

n Sim Spm Sy 0 0 0 On

&3 | _ Sz Spys Sy O 0 0 033 (D.17)
e |0 0 0o S,, 0 0 |20,

&, 0 0 0 0 S,; O 20,

&y 0 0 0 0 0 S, )\20,

Comparing it with (D.11), we see the same structure with the nine independent constants. Also,

it is interesting to make the following remarks:
1. There is no coupling between normal stresses and shear strains
2. There is no coupling between shear stresses and normal strains

3. There is no coupling between a shear stress acting on one plane and a shear stress on a

different plane.

It is important to note that by changing the reference system of coordinates, the number of
independent constant does not but the matrix is fully populated. To express the elements of the

matrix (D.17) with the engineering constants, we consider the following simple loading cases:
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1. Longitudinal tension along direction 1

From (D.17) we have,

1 V
_ _ . _ _ Y
€1 =810, =0y, 5 &, =80, = Oy
1 1
V,
_ _ Vi3 ) e
€33 = 81330, = £ O 5 &,=6;=63;=0

Transverse tension (in-plane) along direction 2

From (D.17) we have,

% 1
_ _ Wy ) _ _
€ =810 == 70y 5 € =800, =""0,
2 2
v
_ _ Vn . e .
€y = 8135033 == =0, 5 &, =63=6;=0
E,
3. Transverse tension (out of plane) along direction

From (D.17) we have,

v Vv
_ _ W ) _ _ Y
€ =8 3305 =033 5 & =8y33053 =—— 0y
E, 3
1 .
€3 =8133033 =033 5 &,=83=6;=0
E,
4. In plane shear on the 1-2 plane

From (D.17) we have,
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5. Out of plane shear on the 1-3 plane

From (D.17) we have,

€ =86y =&;=0

6. Out of plane shear on the 2-3 plane

From (D.17) we have,

& =8y =¢6;3=0

1
23 _FB » 5 E,=63=0
Thus, relations expressed in (D.17) are,
. T I R
E, E E
e Lo ve 0 0
&y E, E, E; oy
&€y Vi3 Va3 L 0 0 0 O
€33 _ ! E, E, O3 _ (D.18)
b2 O 0 0 ! o o |2
813 4G12 20—13
&2 0 0 0 0 ! 0 |\2%
4G,,
1
0 0 0 0 0 G
23

Note that the shear components in (D.18) can be simplified. However, they are left for
consistency, and correspondence/comparison with (D.17). In the following paragraphs, we will

simplify these elements when it is appropriate. ,

The symmetry requirements on the above compliance matrix result in the following relations,
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21z . B . 83 (D.19a)
E2 El 1 3 E2 E3

or in general
Yo Yoo MilBi (D.19b)
E, E, v, E,

It is easy to see here the nine independent elastic constants, i.e. E,E,,E;, G,,G;,G,;,and
V15 Vips Vi3s V315 Vass V3, Telated by the three symmetry relations (D.19).
Structural panels made of layered composites are relatively thin and subjected to in-plane loads.

Thus, they are in a state to plane stress. It is interesting to deduce the strain-stress as well as

stress-strain relations in such cases.

We consider an orthotropic material as it is the most common composite material used in

structural panels.

For plane stress problems, the non-zero stress components are o,,, 0,,, 0,, =0,, #0 and

O3, Oy, 04, =0 as shown in Fig. DS.

2 A oy
| T gL
P —
——
oy 01
l .|-
O
o, 1
---------- >
O, X
12 0-22

Fig. D5: Plane stress state with reference to the principal material axe

For this plane case the full matrix relation (D.17) reduces to,

&y Sin Sum 0 Oy
En |=| Sim Sum 0 Oy |- (D.20a)
3P 0 0 S )\ 20,

And in terms of the engineering constants,
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1w,
E E
&1 vl 12 Oy
&, |= —E+2 ra 0 oy |- (D.20b)
3P 1 ? 1 20,
0 0o —
4G,

Notice here that the number of independent elastic constants reduces to four E,,E,,G,,,V,,,V,,

with the symmetry v,, / E, =v,, / E,.

In mechanics of composites, the constitutive relations shown earlier needs to be simplified
because of tensorial nature of stress, strain and the compliance that makes transformation
between coordinate systems complex. Thus, the following convention is adopted in the
literature. In this summary we present the case of a plane stress, which is the most common
state of stress encountered in applications of composite materials as structural components. In

the adopted simplification, using the engineering strains y,, = 2¢,, , the stresses and strains with

reference to the principal material axes (x,,x,) are indicated by,

5 &n |7 &

& Sy S, 0 O,
& =S, S, 0] o, | (D.21a)
712 0 0  S¢)\on

From (D.20b) the elastic constants are,

<

V 1
Sp,=8,=-2=-"2 8, =— (D.21b)

S11 = — —
E, E, G,

1 . 1 .
5 TR
1 2
In terms of stiffness, relation (D.21a) can be inverted to obtain the constitutive relations as

follows,

oy O, O, O & O, O, O 0 &
0u|=0n On 0 |l & =0 |=0, O, 0| & (D.22a)
Oy, 0 0 O )\2¢, Oy, 0 0 Ou )\ 7
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with,

E E
i N
12721 E E 12721 (D22b)
v v
0,=0, = =2 5 O =0y
1=vpvy 1=v,vy,
With reference to another system of axes (X, V), they are indicated as,
Gx 8)('
o, | and | ¢, (D.23)
Xy 7/ Xy
with the corresponding constitutive relations,
8){ SXX Xy S)CS O-X
8)’ = Syx w Sy § G}’ (D . 24)
}/ Xy Ssx sy s Xy
O-X QXX Qxy QXS 8)(
O-xy st st st ?/ Xy

Note here that both matrices are full which demonstrates a coupling between normal and shear
stresses. However, the matrices are symmetric and the number of independent constants

remains the same, i.e. four independent elastic constants.

Changes in the coordinate system

Very often the lamina principal axes ((x,,x,) do not coincide with the loading axes (X, })).
Then the stress-strain relation referred to the principal axes can be expressed in terms of the
relations with reference to (X, V). Note that the transformation of stresses and strains in

Cartesian coordinates are independent of material properties. That is, they are the same if the

material is isotropic or anisotropic. Fig. D.6 shows the stress state at a point in an orthotropic
material with respect to (x,,x,) and (X, ). The stresses a,,, 0,,, 0,, can be expressed in terms

of the standard equations found in the transformation of a second order tensor (or Morh’s

circle), i.e.,
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A
Y o, T o
—_—" X -
o
»x (o3 y)g,«"(\
GX ’ ; \
-« — 9
O, |
w i
X 0 %
4—

Fig. D6: State of stress of an element in plane stress.
o, =0, cos’ @+0,sin’ 0+20,, cosPsinf

. 2 2 .
o, =0,sin" 0+0, cos” 0—20, cosfsinb

0, =0, =—(0,—0,)cosOsinf+ o, (cos’ & —sin’ H).

For simplicity, we introducec =c0s#, s =sinf. It is often convenient in the mechanics of

2
C S

composites materials, to express these transformation equations in matrix form as follows,
2cs

o
2
= S c

X

GX
=2cs o, =[T] o,
2 2
—cs s ¢ —s o,

(o}

(D.26)

As for the strains, the same transformation rules apply and the form of the transformation
relation is the same,

_ 2 -2 . 2
g =¢,c08" O+¢ sin” O+e , cosfsinb & .
_ .2 2 . - =
& =¢.sin" @+0o cos" O—¢ cosfsinf cs || g, [T] €
2 2
€ -cs ¢s C-§

&, =—(¢,—¢&,)cosOsinO+¢ (cos’ O —sin’ 0). €
Since we introduced the engineering strain earlier, y,, =2¢,, », =2¢,, a factor of 2 appears

Xy
in the third equation. Thus, matrix [T] is modified accordingly,

g s cs €, €,
e |=| & —cs e, |= [T'] €, (D.27)
712 —2cs 2cs -5’ Vs 2
In inverted form, (D.27) becomes,
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€, c S —cs g g
e, |=| s ¢ cs g, |= [T']_1 & | (D.28)
Ve 2cs —2cs -5’ Vi Vi

The next step is to express the elements of compliance matrix in (D.24) in terms of the elements

with reference to the principal material axes(x,,x,). They can be obtained by transformation

of the strain-stress relations following the steps below,

&y & S S 0 )0
-1 -1
e, |=[T] | & [=[T] | Sy S» O | o,
7)0’ 7/12 O O S66 0'12
(D.29)
Sy S, 0 0,
-1
=[T']'| S, S» 0 |[T] o,
0 0 S Oy
Comparing it with (D.24), we have,
Sxx » S’“ S, S, 0
S S, Sy |=[rT's, S» o [[T] (D.30)
SX sy Sss 0 0 S66
Explicitly, the constants are related as follows,
S, =8¢ +8,5* +(28, + 84 ) s’
S, = S, st +8,,ct+ (2512 + S66)czs2
S, =(48,,+48,,—8S), — 25, )’s” + S (c* +5*)
(D.31)
S, =(S, +S22 S )C’s” + 8, (¢t +5%)
S, =(28, - S5 )C’s—(28,, =28, =S¢ ) cs
S =(25,, - 6)cs3 —(28,, —28,, =S )’s

Using similar steps, we can express the stiffness matrix in (D.25) with reference to an (X, )

coordinate system,
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S

o = an4 +Q2254 +(2Q12 +4Q66)02S2

QW = Qns4 + szc4 + (2Q12 +40 )C2S2

It is also of interest and useful in composites mechanics to express the engineering constants
(i.e. moduli and Poisson’s ratios) with reference to a coordinate system rotated at an angle theta
with respect to the principal material coordinates. For a better understanding and links to the
applied load, we can imagine a series of elementary tests, similar to the ones used to construct
the compliance matrix (D.18). Thus, we consider a small square of a unidirectional composite

whose reinforcing fibers are at an angle @ with the principal materials axes as shown in Fig.

(
(

L =(0,-0,
(Qu 0, - 2Q66)cs3

D7. Note here that we have a full matrix.

Fig. D7: Element of a composite plate loaded along axes at an angle to the principal material system.

We apply the stresseso,,0,,0,, =0,

stress relations,

(@).apply o, = ¢ =—

(). apply o, = ¢ =-

(). apply o,

= & =

Qi1+ 0 =20, —20,)’s” + Qe (c* +5)
01+ 0y —40,,)¢’s” +0,, (c* +5*)

—204) s —(0y, — 0, =20, ) cs
- (Q22 -0, 20 ) c’s

y o, T o
— X -
o
X (o2 o <
O-x ’ \\
4—1 >
o,
A3 o
X 5 . \y >
— X

1 v,
Gx: 8)7 __E ) ny
X X
v 1
»x _
v &= E v Vo
y y
77sx 775)’
ny, Sy = G O'y, yxy
Xy Xy
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=——0,, (or pure shear).

Xy

(D.32)

one at a time, to obtain in each case the following strain



Here the coefficients 7,7, .7, .7, are the shear coupling coefficients.

have,

L - Vyr &
E E ) ny
&, | " o,
Vx ) S
“°E E G |®
Y 7 Y oy,
77‘(13 77}’3 L
E. E G,

These elastic constants are related by the following symmetries,

Vo Vwo o M _Me . e _ Ty
E. Ey E o Ey ny

A comparison with the matrix form of strain — stress relations (D.24),

gx Sxx Xy st Gx
g)’ = Syx S,Vy S.VS O-y
7/ xy Ssx sy s Xy

results in the following,

1 1 1
Se=—73 8, =73 8§, =—
E E ) ny
1%
S = S = — il = — Bl
xy yx EX Ey

E x ny
S, =5, s _ Ty
E y ny

In matrix form we

(D.33)

(D.34)

(D.24bis)

(D.35a)

(D.35b)

(D.35¢)

(D.35d)

We can also express the moduli, Poisson’s ratios and shear coupling coefficients in terms of

S,, (i,j=x,y,s) appropriate combination of (D.35). To obtain the stiffness matrix, we can

invert the matrix in (D.33).

Next we express the variation of the elastic constants as a function of @, angle of the loading
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direction with respect to the material principal direction (Fig. D7). This can be achieved by
combining (D.35) and (D.31). The resulting elastic expressions for the constants are useful
because they allow for the examination of the influence of loading direction (with respect to

the material principal directions) on the strain-stress response of a lamina.

A typical case is shown below for the Young’s modulus along orientation defined by axis x.

We start with (D.31), replace parameters S, with the corresponding expressions in (D.35) and

the symmetry conditions (D.19a) to obtain,

L:Lc4+is4 012 czs2+ czsz

Ex El 2 1 12

L:Lc“—kis“—i 2 2—i02s2+iczs2

Ex E1 Ez E1 Ez G12 (D-36)

= c—(02 —vlzsz)—i-z—(sz —V2102)+G—6‘2S . (D-37)

X 1 2 12

A similar procedure is followed to express the other elastic constants in terms of the
orientation angle.

1 ¢ s 2.2
—=—(c VS )+—(s —v,C )+—c s
Ex El 2 12
EL_SE(Sz vlzcz)+ (02 v21s2)+ ! c’s’

y 1 2 12

2.2 2.2 2 252

%:420 (1+v,)+ 20 (1+v21)+(c _3

Xy 1 2 12
N 1 (D.38)
== ——(vlzc2 S2)+ (v21s2 c )+—czs2
Ex Ey El 2 12
n. n._ 2cs } cS [ 4 o
xs sy 1 _ 1 _ _
E, ny E, ( +VI2) 2 ( VZI) 12( ’ )
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